Chapter 5 - Mole Concept and Stoichiometry

Exercise 5(A)

Solution 1.

(a) Gay-Lussac's law states that when gases react, they do so in volumes which bear a simple ratio to one another, and to the volume of the gaseous product, provided that all the volumes are measured at the same temperature and pressure.
(b) Avogadro's law states that equal volumes of all gases under similar conditions of temperature and pressure contain the same number of molecules.

Solution 2.

a) The number of atoms in a molecule of an element is called its atomicity. Atomicity of Hydrogen is 2, phosphorus is 4 and sulphur is 8 .
b) N_{2} means 1 molecule of nitrogen and 2 N means two atoms of nitrogen.
N_{2} can exist independently but 2 N cannot exist independently.

Solution 3.

(a) This is due to Avogadros Law which states Equal volumes of all gases under similar conditions of temperature and pressure contain the same number of molecules.
Now volume of hydrogen gas =volume of helium gas
n molecules of hydrogen $=\mathrm{n}$ molecules of helium gas
$\mathrm{nH}_{2}=\mathrm{nHe}$
1 mol . of hydrogen has 2 atoms of hydrogen and I molecule of helium has 1 atom of helium
Therefore $2 \mathrm{H}=\mathrm{He}$
Therefore atoms in hydrogen is double the atoms of helium.
(b) For a given volume of gas under given temperature and pressure, a change in any one of the variable i.e., pressure or temperature changes the volume.
(c) Inflating a balloon seems violating Boyles law as volume is increasing with increase in pressure. Since the mass of gas is also increasing.

Solution 4.

$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{~V} 1 \mathrm{~V} \quad 2 \mathrm{~V}$

From the equation, 2 V of hydrogen reacts with 1 V of oxygen
so $200 \mathrm{~cm}^{3}$ of Hydrogen reacts with $=200 / 2=100 \mathrm{~cm}^{3}$
Hence, the unreacted oxygen is $150-100=50 \mathrm{~cm}^{3}$ of oxygen.

Solution 5.

$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
1 V 2 V 1 V
From equation, 1 V of CH_{4} reacts with $=2 \mathrm{~V}$ of O_{2}
so, $80 \mathrm{~cm}^{3} \mathrm{CH}_{4}$ reacts with $=80 \times 2=160 \mathrm{~cm}^{3} \mathrm{O}_{2}$
Remaining O_{2} is $200-160=40 \mathrm{~cm}^{3}$
From equation, 1 V of methane gives 1 V of CO_{2}
So, $80 \mathrm{~cm}^{3}$ gives $80 \mathrm{~cm}^{3} \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ is negligible.

Solution 6.

```
2\mp@subsup{C}{2}{}\mp@subsup{\textrm{H}}{2}{}+5\mp@subsup{\textrm{O}}{2}{}->4\mp@subsup{\textrm{CO}}{2}{}+2\mp@subsup{\textrm{H}}{2}{}\textrm{O}(l)
2V5V4V
From equation, 2 V of C2 }\mp@subsup{\textrm{H}}{2}{}\mathrm{ requires =5 V of O
So, for 400ml C2 H2, O
Similarly, 2 V of C2 H2 gives =4V of CO
So, 400ml of C2 H2 Hives CO
```


Solution 7.

Balanced chemical equation:
$\mathrm{H}_{2} \mathrm{~S}_{(g)}+\mathrm{Cl}_{2(9)} \rightarrow 2 \mathrm{HCl}_{(g)}+\mathrm{S}_{(\mathrm{s})}$
1 mole 1 mole 2 moles 1 md
$112 \mathrm{~cm}^{3} \quad 120 \mathrm{~cm}^{3}$
(i)At STP, 1 mole gas occupies 22.4 L .

As 1 mole $\mathrm{H}_{2} \mathrm{~S}$ gas produces 2 moles HCl gas,
$22.4 \mathrm{~L} \mathrm{H}_{2} \mathrm{~S}$ gas produces $22.4 \times 2=44.8 \mathrm{~L} \mathrm{HCl}$ gas.
Hence, $112 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{~S}$ gas will produce $112 \times 2=224 \mathrm{~cm}^{3} \mathrm{HCl}$ gas.
(ii) 1 mole $\mathrm{H}_{2} \mathrm{~S}$ gas consumes 1 mole Cl_{2} gas.

This means $22.4 \mathrm{~L} \mathrm{H}_{2} \mathrm{~S}$ gas consumes $22.4 \mathrm{LCl}_{2}$ gas at STP.
Hence, $112 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{~S}$ gas consumes $112 \mathrm{~cm}^{3} \mathrm{Cl}_{2}$ gas.
$120 \mathrm{~cm}^{3}-112 \mathrm{~cm}^{3}=8 \mathrm{~cm}^{3} \mathrm{Cl}_{2}$ gas remains unreacted.
Thus, the composition of the resulting mixture is $\underline{224 \mathrm{~cm}^{3}}-\underline{H C l}$ gas $+8 \mathrm{~cm}^{3}-\underline{\mathrm{Cl}}_{\underline{2}}$ gas.

Solution 8.

$2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
2 V 7 V 4 V
Now from equation, 2 V of ethane reacts with $=7 \mathrm{~V}$ of oxygen
So, 600 cc of ethane reacts with $=600 \times 7 / 2=2100 \mathrm{cc}$
Hence, unused O_{2} is $=2500-2100=400 \mathrm{cc}$
From 2 V of ethane $=4 \mathrm{~V}$ of CO_{2} is produced
$\mathrm{So}, 600 \mathrm{cc}$ of ethane will produce $=4 \times 600 / 2=1200 \mathrm{cc} \mathrm{CO}_{2}$

Solution 9.
$\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$1 V 3 V$
11litre 33 litre

$$
\begin{gathered}
\frac{\mathbf{P}_{1} \mathbf{V}_{\mathbf{1}}}{\mathbf{T}_{\mathbf{1}}}=\frac{\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}}{\mathbf{T}_{\mathbf{2}}} \\
\mathbf{V}_{\mathbf{2}}=\frac{\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}} \mathbf{T}_{\mathbf{2}}}{\mathbf{P}_{\mathbf{2}} \mathbf{T}_{\mathbf{1}}}=\frac{380 \times 33 \times 273}{549 \times 760}=8.25 \text { litres }
\end{gathered}
$$

Solution 10.

$$
\begin{aligned}
& \mathrm{CH}_{4}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}+2 \mathrm{HCl} \\
& 1 \mathrm{~V} 2 \mathrm{~V} 1 \mathrm{~V} 2 \mathrm{~V} \\
& \text { From equation, } 1 \mathrm{~V} \text { of } \mathrm{CH}_{4} \text { gives }=2 \mathrm{~V} \mathrm{HCl} \\
& \text { so, } 40 \mathrm{ml} \text { of methane gives }=80 \mathrm{ml} \mathrm{HCl} \\
& \text { For } 1 \mathrm{~V} \text { of methane }=2 \mathrm{~V} \text { of } \mathrm{Cl}_{2} \text { required } \\
& \text { So, for } 40 \mathrm{ml} \text { of methane }=40 \times 2=80 \mathrm{ml} \text { of } \mathrm{Cl}_{2}
\end{aligned}
$$

Solution 11.

$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ 1 V 5 V 3 V

From equation, 5 V of O_{2} required $=1 \mathrm{~V}$ of propane so, $100 \mathrm{~cm}^{3}$ of O_{2} will require $=20 \mathrm{~cm}^{3}$ of propane

Solution 12.

```
2NO}+\mp@subsup{\textrm{O}}{2}{}->2\mp@subsup{\textrm{NO}}{2}{
2V1V2V
From equation, 1V of O
200\mp@subsup{\textrm{cm}}{}{3}\mathrm{ oxygen will react with }=200\times2=400\mp@subsup{\textrm{cm}}{}{3}\textrm{NO}
Hence, remaining NO is 450-400=50 cm
NO}2\mathrm{ produced = 400 cm}\mp@subsup{}{3}{3}\mathrm{ because 1 V oxygen gives 2 V NO
Total mixture = 400 +50=450 cm
```

Solution 13.
$2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$
2 V 1 V 2 V

2 V of CO requires $=1 \mathrm{~V}$ of O_{2}
so, 100 litres of CO requires $=50$ litre of O_{2}
Solution 14.

```
\(4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}\)
4 V 5 V 4 V
9 litres of reactants gives 4 litres of NO
So, 27 litres of reactants will give \(=27 \times 4 / 9=12\) litres of NO
```

Solution 15.
$\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
1 V 1 V 2 V

Since 1 V hydrogen requires 1 V of oxygen and $4 \mathrm{~cm}^{3}$ of H_{2} remained behind so the mixture had com">16 cm ${ }^{3}$ hydrogen and $16 \mathrm{~cm}^{3}$ chlorine.
Therefore Resulting mixture is $\mathrm{H}_{2}=4 \mathrm{~cm}^{3}, \mathrm{HCl}=32 \mathrm{~cm}^{3}$

Solution 16.
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
1 V 2 V 1 V
$2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
2 V 5 V 4 V

From the equations, we can see that
1 VCH 4 requires oxygen $=2 \mathrm{~V} \mathrm{O}_{2}$
So, $10 \mathrm{~cm}^{3} \mathrm{CH}_{4}$ will require $=20 \mathrm{~cm}^{3} \mathrm{O}_{2}$
Similarly $2 \mathrm{~V} \mathrm{C}_{2} \mathrm{H}_{2}$ requires $=5 \mathrm{~V} \mathrm{O}_{2}$
So, $10 \mathrm{~cm}^{3} \mathrm{C}_{2} \mathrm{H}_{2}$ will require $=25 \mathrm{~cm}^{3} \mathrm{O}_{2}$
Now, $20 \mathrm{~V} \mathrm{O}_{2}$ will be present in 100 V air and $25 \mathrm{~V} \mathrm{O}_{2}$ will be present in 125 V air , so the volume of air required is $225 \mathrm{~cm}^{3}$

Solution 17.

$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$
60 ml of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ gives $3 \times 60=180 \mathrm{ml} \mathrm{CO}_{2}$
40 ml of butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ gives $=8 \times 40 / 2=160 \mathrm{ml}$ of CO_{2}
Total carbon dioxide produced $=340 \mathrm{ml}$
So , when 10 litres of the mixture is burnt $=34$ litres of CO_{2} is produced.

Solution 18.
$2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$4 \mathrm{VCO}_{2}$ is collected with $2 \mathrm{VC}_{2} \mathrm{H}_{2}$
So, $200 \mathrm{~cm}^{3} \mathrm{CO}_{2}$ will be collected with $=100 \mathrm{~cm}^{3} \mathrm{C}_{2} \mathrm{H}_{2}$
Similarly, 4 V of CO_{2} is produced by 5 V of O_{2}
$\mathrm{So}, 200 \mathrm{~cm}^{3} \mathrm{CO}^{2}$ will be produced by $=250 \mathrm{ml}$ of O_{2}

Solution 19.

This experiment supports Gay lussac's law of combining volumes. Since the unchanged or remaining O_{2} is 58 cc so, used oxygen $106-58=48 \mathrm{cc}$ According to Gay lussac's law, the volumes of gases reacting should be in a simple ratio.
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
1 V 2 V
24 cc 48 cc
i.e. methane and oxygen react in a 1:2 ratio.

Solution 19.

According to Avogadro's law, equal volumes of gases contain equal no. of molecules under similar conditions of temperature and pressure. This means more volume will contain more molecules and least volume will contain least molecules.
So,
(a) 5 litres of hydrogen has greatest no. of molecules with the maximum volume. (b) 1 litre of SO_{2} contains the least number of molecules since it has the smallest volume.

Solution 20.

Gas	Volume (in litres)	Number of molecules
Chlorine	10	$\mathrm{x} / 2$
Nitrogen	20	x
Ammonia	20	X
Sulphur dioxide	5	$\mathrm{x} / 4$

Solution 21.

$100 \mathrm{~cm}^{3}$ of oxygen contains $=Y$ molecules
Applying Avogadro's law,
$50 \mathrm{~cm}^{3}$ of nitrogen contains $=\frac{50 \mathrm{Y}}{100}=\frac{Y}{2}$

Exercise 5(B)

Solution 1.

a) This statement means one atom of chlorine is 35.5 times heavier than $1 / 12$ time of the mass of an atom C-12.
b) The value of avogadro's number is 6.023×10^{23}
c) The molar volume of a gas at STP is $22.4 \mathrm{dm}^{3}$ at STP

Solution 2.

(a) The vapour density is the ratio between the masses of equal volumes of gas and hydrogen under the conditions of standard temperature and pressure.
(b) Molar volume is the volume occupied by one mole of the gas at STP. It is equal to $22.4 \mathrm{dm}^{3}$.
(c) The relative atomic mass of an element is the number of times one atom of the element is heavier than 1/12 times of the mass of an atom of carbon-12.
(d) The relative molecular mass of an compound is the number that represents how many times one moleculae of the substance is heavier than $1 / 12$ of the mass of an atom of carbon-12.
(e) The number of atoms present in 12 g (gram atomic mass) of $\mathrm{C}-12$ isotope, i.e. 6.023 $\times 10^{23}$ atoms.
(f) The quantity of the element which weighs equal to its gram atomic mass is called one gram atom of that element.
(g) Mole is the amount of a substance containing elementary particles like atoms, molecules or ions in 12 g of carbon-12.

Solution 3.

(a) Applications of Avogadro's Law :

1. It explains Gay-Lussac's law.
2. It determines atomicity of the gases.
3. It determines the molecular formula of a gas.
4. It determines the relation between molecular mass and vapour density.
5. It gives the relationship between gram molecular mass and gram molecular volume.
(b) According to Avogadro's law under the same conditions of temperature and pressure, equal volumes of different gases have the same number of molecules.

Since substances react in simple ratio by number of molecules, volumes of the gaseous reactants and products will also bear a simple ratio to one another. This what Gay Lussac's Law says.
$\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
1V 1V 2V (By Gay-Lussacs law)
n molecules n molecules 2 n molecules (By Avogadros law)

Solution 4.

(a) $(2 \mathrm{~N}) 28+(8 \mathrm{H}) 8+(\mathrm{Pt}) 195+(6 \mathrm{Cl}) 35.5 \times 6=444$
(b) $\mathrm{KClO}_{3}=(\mathrm{K}) 39+(\mathrm{Cl}) 35.5+(3 \mathrm{O}) 48=122.5$
(c) $(\mathrm{Cu}) 63.5+(\mathrm{S}) 32+(4 \mathrm{O}) 64+\left(5 \mathrm{H}_{2} \mathrm{O}\right) 5 \times 18=249.5$
(d) $(2 \mathrm{~N}) 28+(8 \mathrm{H}) 8+(\mathrm{S}) 32+(4 \mathrm{O}) 64=132$
(e) $(\mathrm{C}) 12+(3 \mathrm{H}) 3+(\mathrm{C}) 12+(2 \mathrm{O}) 32+(\mathrm{Na}) 23=82$
(f) $(\mathrm{C}) 12+(\mathrm{H}) 1+(3 \mathrm{Cl}) 3 \times 35.5=119.5$
(g) $(2 \mathrm{~N}) 28+(8 \mathrm{H}) 8+(2 \mathrm{Cr}) 2 \times 51.9+(7 \mathrm{O}) 7 \times 16=252$

Solution 5.

(a) No. of molecules in $73 \mathrm{~g} \mathrm{HCl}=6.023 \times 10^{23} \times 73 / 36.5(\mathrm{~mol}$. mass of HCl$)$ $=12.04 \times 10^{23}$
(b) Weight of 0.5 mole of O_{2} is $=32\left(\mathrm{~mol}\right.$. Mass of $\left.\mathrm{O}_{2}\right) \times 0.5=16 \mathrm{~g}$
(c) No. of molecules in $1.8 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=6.023 \times 10^{23} \times 1.8 / 18$ $=6.023 \times 10^{22}$
(d) No. of moles in 10 g of $\mathrm{CaCO}_{3}=10 / 100\left(\mathrm{~mol}\right.$. Mass CaCO_{3})
$=0.1 \mathrm{~mole}$
(e) Weight of 0.2 mole H_{2} gas $=2($ Mol. Mass) $\times 0.2=0.4 \mathrm{~g}$
(f) No. of molecules in 3.2 g of $\mathrm{SO}_{2}=6.023 \times 10^{23} \times 3.2 / 64$ $=3.023 \times 10^{22}$

Solution 6.

Molecular mass of $\mathrm{H}_{2} \mathrm{O}$ is $18, \mathrm{CO}_{2}$ is $44, \mathrm{NH}_{3}$ is 17 and CO is 28 So, the weight of 1 mole of CO_{2} is more than the other three.

Solution 7.

4 g of NH_{3} having minimum molecular mass contain maximum molecules.

Solution 8.

a) No. of particles in s1 mole $=6.023 \times 10^{23}$

So, particles in 0.1 mole $=6.023 \times 10^{23} \times 0.1=6.023 \times 10^{22}$
b) 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains $=2 \times 6.023 \times 10^{23}$

So, 0.1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains $=2 \times 6.023 \times 10^{23} \times 0.1$
$=1.2 \times 10^{23}$ atoms of hydrogen
c) 111 g CaCl 2 contains $=6.023 \times 10^{23}$ molecules

So, 1000 g contains $=5.42 \times 10^{24}$ molecules

Solution 9.

(a) 1 mole of aluminium has mass $=27 \mathrm{~g}$

So, 0.2 mole of aluminium has mass $=0.2 \times 27=5.4 \mathrm{~g}$
(b) 0.1 mole of HCl has mass $=0.1 \times 36.5$ (mass of 1 mole)
$=3.65 \mathrm{~g}$
(c) 0.2 mole of $\mathrm{H}_{2} \mathrm{O}$ has mass $=0.2 \times 18=3.6 \mathrm{~g}$
(d) 0.1 mole of CO_{2} has mass $=0.1 \times 44=4.4 \mathrm{~g}$

Solution 10.

(a) 5.6 litres of gas at STP has mass $=12 \mathrm{~g}$

So, 22.4 litre (molar volume) has mass $=12 \times 22.4 / 5.6$ = 48g(molar mass)
(b) 1 mole of SO_{2} has volume $=22.4$ litres

So, 2 moles will have $=22.4 \times 2=44.8$ litre

Solution 11.

(a) 1 mole of CO_{2} contains $\mathrm{O}_{2}=32 \mathrm{~g}$

So, CO_{2} having 8 gm of O_{2} has no. of moles $=8 / 32=0.25$ moles (b) 16 g of methane has no. of moles $=1$

So, 0.80 g of methane has no. of moles $=0.8 / 16=0.05$ moles

Solution 12.
(a) $6.023 \times 10{ }^{23}$ atoms of oxygen has mass $=16 \mathrm{~g}$ So, 1 atom has mass $=16 / 6.023 \times 10^{23}=2.656 \times 10^{-23} \mathrm{~g}$
(b) 1 atom of Hydrogen has mass $=1 / 6.023 \times 10^{23}=1.666 \times 10^{-24}$
(c) 1 molecule of NH_{3} has mass $=17 / 6.023 \times 10^{23}=2.82 \times 10^{-23} \mathrm{~g}$
(d) 1 atom of silver has mass $=108 / 6.023 \times 10^{23}=1.701 \times 10^{-22}$
(e) 1 molecule of O_{2} has mass $=32 / 6.023 \times 10^{23}=5.314 \times 10^{-23} \mathrm{~g}$
(f) 0.25 gram atom of calcium has mass $=0.25 \times 40=10 \mathrm{~g}$

Solution 13.

(a) 0.1 mole of CaCO_{3} has mass $=100$ (molar mass) $\times 0.1=10 \mathrm{~g}$
(b) 0.1 mole of $\mathrm{Na}_{2} \mathrm{SO}_{4} .10 \mathrm{H}_{2} \mathrm{O}$ has mass $=322 \times 0.1=32.2 \mathrm{~g}$
(c) 0.1 mole of CaCl_{2} has mass $=111 \times 0.1=11.1 \mathrm{~g}$
(d) 0.1 mole of Mg has mass $=24 \times 0.1=2.4 \mathrm{~g}$

Solution 14.

1molecule of $\mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{O}$ contains oxygen atoms $=13$
So, 6.023×10^{23} molecules (1 mole) has atoms $=13 \times 6.023 \times 10^{23}$
So, 0.1 mole will have atoms $=0.1 \times 13 \times 6.023 \times 10^{23}=7.8 \times 10^{23}$

Solution 15.
3.2 g of S has number of atoms $=6.023 \times 10^{23} \times 3.2 / 32$
$=0.6023 \times 10^{23}$

So, 0.6023×10^{23} atoms of Ca has mass $=40 \times 0.6023 \times 10^{23} / 6.023 \times 10^{23}$ $=4 \mathrm{~g}$

Solution 16.

(a) No. of atoms $=52 \times 6.023 \times 10^{23}=3.131 \times 10^{25}$
(b) $4 \mathrm{amu}=1$ atom of He
so, $52 \mathrm{amu}=13$ atoms of He
(c) 4 g of He has atoms $=6.023 \times 10^{23}$

So, 52 g will have $=6.023 \times 10^{23} \times 52 / 4=7.828 \times 10^{24}$ atoms

Solution 17.

Molecular mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \mathrm{~g}$ 106 g has $2 \times 6.023 \times 10^{23}$ atoms of Na
So, 5.3 g will have $=2 \times 6.023 \times 10^{23} \times 5.3 / 106=6.022 \times 10^{22}$ atoms
Number of atoms of $C=6.023 \times 10^{23} \times 5.3 / 106=3.01 \times 10^{22}$ atoms
And atoms of $\mathrm{O}=3 \times 6.023 \times 10^{23} \times 5.3 / 106=9.03 \times 10^{22}$ atoms

Solution 18.

(a) 60 g urea has mass of nitrogen $\left(\mathrm{N}_{2}\right)=28 \mathrm{~g}$

So, 5000 g urea will have mass $=28 \times 5000 / 60=2.33 \mathrm{~kg}$
(b) 64 g has volume $=22.4$ litre

So, 320 g will have volume $=22.4 \times 320 / 64=112$ litres

Solution 19.

(a) Vapour density of carbon dioxide is 22, it means that 1 molecule of carbon dioxide is 22 heavier than 1 molecule of hydrogen.
(b) Vapour density of Chlorine atom is 35.5 .

Solution 20.

$22400 \mathrm{~cm}^{3}$ of CO has mass $=28 \mathrm{~g}$
So, $56 \mathrm{~cm}^{3}$ will have mass $=56 \times 28 / 22400=0.07 \mathrm{~g}$

Solution 21.

18 g of water has number of molecules $=6.023 \times 10^{23}$
So, 0.09 g of water will have no. of molecules $=6.023 \times 10^{23} \times 0.09 / 18=3.01 \mathrm{x}$ 10^{21} molecules

Solution 22.
(a) No. of moles in $256 \mathrm{~g} \mathrm{~S}_{8}=1$ mole

So, no. of moles in $5.12 \mathrm{~g}=5.12 / 256=0.02$ moles
(b) No. of molecules $=0.02 \times 6.023 \times 10^{23}=1.2 \times 10^{22}$ molecules

No. of atoms in 1 molecule of $S=8$
So, no. of atoms in 1.2×10^{22} molecules $=1.2 \times 10^{22} \times 8$
$=9.635 \times 10^{22}$ molecules

Solution 23.

Atomic mass of phosphorus $\mathrm{P}=30.97 \mathrm{~g}$
Hence, molar mass of $P_{4}=123.88 \mathrm{~g}$
If phosphorus is considered as P_{4} molecules, then 1 mole $\mathrm{P}_{4} \equiv 123.88 \mathrm{~g}$
Therefore, 100 g of $\mathrm{P}_{4}=0.807 \mathrm{~g}$

Solution 24.

(a) $308 \mathrm{~cm}^{3}$ of chlorine weighs $=0.979 \mathrm{~g}$

So, $22400 \mathrm{~cm}^{3}$ will weigh = gram molecular mass
$=0.979 \times 22400 / 308=71.2 \mathrm{~g}$
(b) 2 g (molar mass) H_{2} at 1 atm has volume $=22.4$ litres

So, $4 \mathrm{~g} \mathrm{H}_{2}$ at 1 atm will have volume $=44.8$ litres
Now, at $1 \mathrm{~atm}\left(\mathrm{P}_{1}\right) 4 \mathrm{~g} \mathrm{H}_{2}$ has volume $\left(\mathrm{V}_{1}\right)=44.8$ litres
So, at $4 \mathrm{~atm}\left(\mathrm{P}_{2}\right)$ the volume $\left(\mathrm{V}_{2}\right)$ will be $=\frac{\mathrm{P}_{1} V_{1}}{\mathrm{P}_{2}}=\frac{1 \times 44.8}{4}=11.2$ litres
(c) Mass of oxygen in 22.4 litres $=32 \mathrm{~g}$ (molar mass)

So, mass of oxygen in 2.2 litres $=2.2 \times 32 / 22.4=3.14 \mathrm{~g}$

Solution 25.

No. of atoms in $12 \mathrm{~g} \mathrm{C}=6.023 \times 10^{23}$
So, no. of carbon atoms in $10^{-12} \mathrm{~g}=10^{-12} \times 6.023 \times 10^{23} / 12$
$=5.019 \times 10^{10}$ atoms

Solution 26.

Given:
$P=1140 \mathrm{~mm} \mathrm{Hg}$
Density = D = $2.4 \mathrm{~g} / \mathrm{L}$

$$
\begin{aligned}
& \mathrm{T}=273{ }^{\circ} \mathrm{C}=273+273=546 \mathrm{~K} \\
& \mathrm{M}=?
\end{aligned}
$$

We know that, at STP, the volume of one mole of any gas is 22.4 L Hence we have to find out the volume of the unknown gas at STP.

First apply Charle's law.
We have to find out the volume of one liter of unknown gas at standard temperature 273 K.

$$
\begin{aligned}
& \mathrm{V}_{1}=1 \mathrm{~L} \quad \mathrm{~T}_{1}=546 \mathrm{~K} \\
& \mathrm{~V}_{2}=? \quad \mathrm{~T}_{2}=273 \mathrm{~K} \\
& \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2} \\
& \mathrm{~V}_{2}=\left(\mathrm{V}_{1} \times \mathrm{T}_{2}\right) / \mathrm{T}_{1} \\
& =(1 \mathrm{~L} \times 273 \mathrm{~K}) / 546 \mathrm{~K} \\
& =0.5 \mathrm{~L}
\end{aligned}
$$

We have found out the volume at standard temperature. Now we have to find out the volume at standard pressure.

Apply Boyle's law.
$\mathrm{P}_{1}=1140 \mathrm{~mm} \mathrm{Hg} \mathrm{V}_{1}=0.5 \mathrm{~L}$
$P_{2}=760 \mathrm{~mm} \mathrm{Hg} \mathrm{V} \mathrm{V}_{2}=$?
$P_{1} \times V_{1}=P_{2} \times V_{2}$
$V_{2}=\left(P_{1} \times V_{1}\right) / P_{2}$
$=(1140 \mathrm{~mm} \mathrm{Hg} \times 0.5 \mathrm{~L}) / 760 \mathrm{~mm} \mathrm{Hg}$
$=0.75 \mathrm{~L}$

Now, 22.4 L is the volume of 1 mole of any gas at STP, then 0.75 L is the volume of X moles at STP
X moles $=0.75 \mathrm{~L} / 22.4 \mathrm{~L}$
$=0.0335$ moles
The original mass is 2.4 g
$\mathrm{n}=\mathrm{m} / \mathrm{M}$
0.0335 moles $=2.4 \mathrm{~g} / \mathrm{M}$
$\mathrm{M}=2.4 \mathrm{~g} / 0.0335$ moles
$\mathrm{M}=71.6 \mathrm{~g} / \mathrm{mole}$
Hence, the gram molecular mass of the unknown gas is 71.6 g

Solution 27.

1000 g of sugar costs = Rs. 40
So, 342 g (molar mass) of sugar will cost $=342 \times 40 / 1000=$ Rs. 13.68

Solution 28.

(a) Weight of 1 g atom $\mathrm{N}=14 \mathrm{~g}$

So, weight of 2 g atom of $\mathrm{N}=28 \mathrm{~g}$
(b) 6.023×10^{23} atoms of C weigh $=12 \mathrm{~g}$

So, 3×10^{25} atoms will weigh $=\frac{12 \times 3 \times 10^{25}}{6.023 \times 10^{23}}=597.7 \mathrm{~g}$
(c) 1 mole of sulphur weighs $=32 \mathrm{~g}$
(d) 7 g of silver

So, 7 grams of silver weighs least.
Solution 29.

40 g of NaOH contains 6.023×10^{23} molecules
So, 4 g of NaOH contains $=6.02 \times 10^{23} \times 4 / 40$
$=6.02 \times 10^{22}$ molecules

Solution 30.

The number of molecules in 18 g of ammonia $=6.02 \times 10^{23}$
So, no. of molecules in 4.25 g of ammonia $=6.02 \times 10^{23} \times 4.25 / 18$
$=1.5 \times 10^{23}$

Solution 31.

(a) One mole of chlorine contains 6.023×10^{23} atoms of chlorine.
(b) Under similar conditions of temperature and pressure, two volumes of hydrogen combined with one volume of oxygen will give two volumes of water vapour.
(c) Relative atomic mass of an element is the number of times one atom of an element is heavier than 1/12 the mass of an atom of carbon-12.
(d) Under similar conditions of temperature and pressure, equal volumes of all gases contain the same number of molecules.

Exercise 5(C)

Solution 1.

Information conveyed by $\mathrm{H}_{2} \mathrm{O}$

1. That $\mathrm{H}_{2} \mathrm{O}$ contains 2 volumes of hydrogen and 1 volume of oxygen.
2. That ratio by weight of hydrogen and oxygen is 1:8.
3. That molecular weight of $\mathrm{H}_{2} \mathrm{O}$ is 18 g .

Solution 2.

The empirical formula is the simplest formula, which gives the simplest ratio in whole numbers of atoms of different elements present in one molecule of the compound.
The molecular formula of a compound denotes the actual number of atoms of different elements present in one molecule of a compound.

Solution 3.
(a) CH (b) $\mathrm{CH}_{2} \mathrm{O}$ (c) CH (d) $\mathrm{CH}_{2} \mathrm{O}$

Solution 4.

Relative mol. mass of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=63.5+32+(16 \times 4)+5(1 \times 2+16)$
$=249.5 \mathrm{~g}$
249.5 g of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ contains water of crystallization $=90 \mathrm{~g}$

So, 100 g will contain $=\frac{90 \times 100}{249.5}=36.07 \mathrm{~g}$
So, $\%$ of $\mathrm{H}_{2} \mathrm{O}=36.07 \times 100=36.07 \%$

Solution 5.
(a) Molecular mass of $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}=234$

So, $\%$ of $\mathrm{P}=2 \times 31 \times 100 / 234=26.5 \%$
(b) Molecular mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}=310$
$\%$ of $\mathrm{P}=2 \times 31 \times 100 / 310=20 \%$

Solution 6.

Molecular mass of $\mathrm{KClO}_{3}=122.5 \mathrm{~g}$
\% of $\mathrm{K}=39 / 122.5=31.8 \%$
\% of $\mathrm{Cl}=35.5 / 122.5=28.98 \%$
$\%$ of $O=3 \times 16 / 122.5=39.18 \%$

Solution 7.

Element \% At. mass Atomic ratio Simple ratio
$\mathrm{Pb} 62.5207 \frac{62.5}{207}=0.3019^{1}$
$\mathrm{N} 8.514 \frac{8.5}{14}=0.6071^{2}$
O $29.016 \frac{29.0}{16}=1.816$
$\mathrm{So}, \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is the empirical formula.

Solution 8.

In $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Fe}=56$ and $\mathrm{O}=16$
Molecular mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}=2 \times 56+3 \times 16=160 \mathrm{~g}$
Iron present in 80% of $\mathrm{Fe}_{2} \mathrm{O}_{3}=\frac{112}{160} \times 80=56 \mathrm{~g}$
So, mass of iron in 100 g of ore $=56 \mathrm{~g}$
\therefore mass of Fe in 10000 g of ore $=56 \times 10000 / 100$
$=5.6 \mathrm{~kg}$

Solution 9.

For acetylene, molecular mass $=2 \times \mathrm{V} . \mathrm{D}=2 \times 13=26 \mathrm{~g}$
The empirical mass $=12(\mathrm{C})+1(\mathrm{H})=13 \mathrm{~g}$
$\mathrm{n}=\frac{\text { Molecular formula mass }}{\text { Empirical formula weight }}=\frac{26}{13}=2$
Molecular formula of acetylene $=2 \times$ Empirical formula $=\mathrm{C}_{2} \mathrm{H}_{2}$
Similarly, for benzene molecular mass $=2 \times$ V.D $=2 \times 39=78$
$n=78 / 13=6$
So, the molecular formula $=\mathrm{C}_{6} \mathrm{H}_{6}$

Solution 10.

Element \% At. mass Atomic ratio Simple ratio
$H 17.71 \frac{17.7}{1}=17.7 \frac{17.7}{5.87}=3$
$\mathrm{N} 82.314 \frac{82.3}{14}=5.87 \frac{5.87}{5.87}=1$
So, the empirical formula $=\mathrm{NH}_{3}$

Solution 11.

Element \% at. mass atomic ratio simple ratio C $54.5412 \frac{54.54}{12}=4.55^{2}$
H $9.091 \frac{9.09}{1}=9.09^{4}$
$036.3616 \frac{36.36}{16}=2.271$
(a) So, its empirical formula $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
(b) empirical formula mass $=44$

Since, vapour density $=44$
So, molecular mass $=2 \times \mathrm{V} . \mathrm{D}=88$
Or n=2
so, molecular formula $=\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)_{2}=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$

Solution 12.

Element \% at. mass atomic ratio simple ratio
C $26.5912 \frac{26.59}{12}=2.21^{1}$
$\mathrm{H} 2.221 \frac{2.22}{1}=2.22^{1}$
$071.1916 \frac{71.19}{16}=4.44^{2}$
(a) its empirical formula $=\mathrm{CHO}_{2}$
(b) empirical formula mass $=45$

Vapour density = 45
So, molecular mass $=$ V.D $\times 2=90$
so, molecular formula $=\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$

Solution 13.

Element \% at. mass atomic ratio simple ratio
$\mathrm{Cl} 71.6535 .5 \frac{71.65}{35.5}=2.01^{1}$
$\mathrm{H} 4.071 \frac{4.07}{1}=4.07^{2}$
C $24.2812 \frac{24.28}{12}=2.02^{1}$
(a) its empirical formula $=\mathrm{CH}_{2} \mathrm{Cl}$
(b) empirical formula mass $=49.5$

Since, molecular mass $=98.96$
so, molecular formula $=\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$

Solution 14.

(a) The g atom of carbon $=4.8 / 12=0.4$ and g atom of hydrogen $=1 / 1=1$
(b) Element Given mass At. mass Gram atom Ratio

C 4.8120 .412
H1112.55
So, the empirical formula $=\mathrm{C}_{2} \mathrm{H}_{5}$
(c) Empirical formula mass $=29$

Molecular mass $=$ V.D $\times 2=29 \times 2=58$
So, molecular formula $=\mathrm{C}_{4} \mathrm{H}_{10}$

Solution 15.

Since, g atom of $\mathrm{Si}=$ given mass $/ \mathrm{mol}$. Mass
so, given mass $=0.2 \times 28=5.6 \mathrm{~g}$
Element mass At. mass Gram atom Ratio
Si 5.6280 .21
$\mathrm{Cl} 21.335 .5 \frac{21.3}{35.5}=0.6^{3}$
Empirical formula $=\mathrm{SiCl}_{3}$

Solution 16.

Element \% at. mass atomic ratio simple ratio
C $92.312 \frac{92.3}{12}=7.7^{1}$
H $7.71 \frac{7.7}{1}=7.7^{1}$
So, empirical formula is CH
Empirical formula mass $=13$
Since molecular mass $=78$
So, $n=6$
\therefore molecular formula is $\mathrm{C}_{6} \mathrm{H}_{6}$

Solution 17.

(a) G atoms of magnesium $=18 / 24=0.75$ or g - atom of Mg
(b) G atoms of nitrogen $=7 / 14=0.5$ or $1 / 2 \mathrm{~g}$ - atoms of N
(c) Ratio of gram-atoms of N and $\mathrm{Mg}=1: 1.5$ or $2: 3$

So, the formula is $\mathrm{Mg}_{3} \mathrm{~N}_{2}$

Solution 18.

Barium chloride $=\mathrm{BaCl}_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Ba}+2 \mathrm{Cl}+\mathrm{x}\left[\mathrm{H}_{2}+\mathrm{O}\right]$
$=137+235.5+x[2+16]$
$=[208+18 x]$ contains water $=14.8 \%$ water in $\mathrm{BaCl}_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$
$=[208+18 x] 14.8 / 100=18 x$
$=[104+9 x] 2148=18000 x$
$=[104+9 x] 37=250 x$
$=3848+333 x=2250 x$
$1917 x=3848$
$x=2$ molecules of water

Solution 19.

Molar mass of urea; $\mathrm{CON}_{2} \mathrm{H}_{4}=60 \mathrm{~g}$
So, $\%$ of Nitrogen $=28 \times 100 / 60=46.66 \%$

Solution 20.

Element \% At. mass Atomic ratio Simple ratio
C 42.1123 .51
H 6.4816 .482
O 51.42163 .21
The empirical formula is $\mathrm{CH}_{2} \mathrm{O}$
Since the compound has 12 atoms of carbon, so the formula is $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{12}$.

Solution 21.

(a) Now since the empirical formula is equal to vapour density and we know that vapour density is half of the molecular mass i.e. we have $n=2$ so, molecular formula is $A_{2} B_{4}$.
(b) Since molecular mass is 2 times the vapour density, so Mol. Mass = 2 V.D

Empirical formula weight = V.D/3
So, $\mathrm{n}=$ molecular mass/ Empirical formula weight $=6$
Hence, the molecular formula is $\mathrm{A}_{6} \mathrm{~B}_{6}$

Solution 22.

Atomic ratio of $\mathrm{N}=87.5 / 14=6.25$
Atomic ratio of $\mathrm{H}=12.5 / 1=12.5$

This gives us the simplest ratio as 1:2
So, the molecular formula is NH_{2}

Solution 23.

Element \% at. mass atomic ratio simple ratio
Zn 22.65650 .3481
H 4.8814 .8814
S 11.15320 .3481
O 61.32163 .8311
Empirical formula of the given compound $=\mathrm{ZnSH}_{14} \mathrm{O}_{11}$
Empiricala formula mass $=65.37+32+141+11+16=287.37$
Molecular mass $=287$
$\mathrm{n}=$ Molecular mass/Empirical formula mass $=287 / 287=1$
Molecular formula $=\mathrm{ZnSO}_{11} \mathrm{H}_{14}$
$=\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$

Exercise 5(D)

Solution 1.

(a) Moles: 1 mole +2 mole $\rightarrow 1$ mole +2 mole
(b) Grams: $42 \mathrm{~g}+36 \mathrm{~g} \rightarrow 74 \mathrm{~g}+4 \mathrm{~g}$
(c) Molecules $=6.02 \times 10^{23}+12.046 \times 10^{23} \rightarrow 6.02 \times 10^{23}+12.046 \times 10^{23}$

Solution 2.

(a) 100 g of CaCO_{3} produces $=164 \mathrm{~g}$ of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$

So, $15 \mathrm{~g} \mathrm{CaCO}_{3}$ will produce $=164 \times 15 / 100=24.6 \mathrm{~g} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
(b) 1 V of CaCO_{3} produces 1 V of CO_{2}

100 g of CaCO_{3} has volume $=22.4$ litres
$\mathrm{So}, 15 \mathrm{~g}$ will have volume $=22.4 \times 15 / 100=3.36$ litres CO_{2}

Solution 3.

```
\(2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\)
66 g
```

(a) $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
34 g 98 g 132 g
For $132 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=34 \mathrm{~g}$ of NH_{3} is required
So, for $66 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=66 \times 32 / 132=17 \mathrm{~g}$ of NH_{3} is required
(b) 17 g of NH_{3} requires volume $=22.4$ litres
(c) Mass of acid required, for producing $132 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=98 \mathrm{~g}$
So, Mass of acid required, for $66 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=66 \times 98 / 132=49 \mathrm{~g}$

Solution 4.

(a) Molecular mass of $\mathrm{Pb}_{3} \mathrm{O}_{4}=3 \times 207.2+4 \times 16=685 \mathrm{~g}$ 685 g of $\mathrm{Pb}_{3} \mathrm{O}_{4}$ gives $=834 \mathrm{~g}$ of PbCl_{2}
Hence, 6.85 g of $\mathrm{Pb}_{3} \mathrm{O}_{4}$ will give $=6.85 \times 834 / 685=8.34 \mathrm{~g}$
(b) 685 g of $\mathrm{Pb}_{3} \mathrm{O}_{4}$ gives $=71 \mathrm{~g}$ of Cl_{2}

Hence, 6.85 g of $\mathrm{Pb}_{3} \mathrm{O}_{4}$ will give $=6.85 \times 71 / 685=0.71 \mathrm{~g} \mathrm{Cl}_{2}$
(c) $1 \mathrm{VPb}_{3} \mathrm{O}_{4}$ produces $1 \mathrm{VCl}_{2}$

685 g of $\mathrm{Pb}_{3} \mathrm{O}_{4}$ has volume $=22.4$ litres $=$ volume of Cl_{2} produced
So, $6.85 \mathrm{~Pb}_{3} \mathrm{O}_{4}$ will produce $=6.85 \times 22.4 / 685=0.224$ litres of Cl_{2}

Solution 5.

Molecular mass of $\mathrm{KNO}_{3}=101 \mathrm{~g}$
63 g of HNO_{3} is formed by $=101 \mathrm{~g}$ of KNO_{3}
So, 126000 g of HNO_{3} is formed by $=126000 \times 101 / 63=202 \mathrm{~kg}$
Similarly, 126 g of HNO_{3} is formed by 170 kg of NaNO_{3}
So, smaller mass of NaNO_{3} is required.

Solution 6.

$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
100 g 73 g 22.4 L
(a) $\mathrm{V}_{1}=2$ litres $\mathrm{V}_{2}=?$
$\mathrm{~T}_{1}=(273+27)=300 \mathrm{KT}_{2}=273 \mathrm{~K}$
$\mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}$
$\mathrm{~V}_{2}=\mathrm{V}_{1} \mathrm{~T}_{2} / \mathrm{T}_{1}=\left[\frac{2 \times 273}{300}\right] \mathrm{L}$
Now at STP 22.4 litres of CO_{2} are produced using $\mathrm{CaCO}_{3}=100 \mathrm{~g}$
So, $\left[\frac{2 \times 273}{300}\right]$ litres are produced by $=100 / 22.42274 / 300=.125 \mathrm{~g}$
(b) 22.4 litres are CO_{2} are prepared from acid $=73 \mathrm{~g}$
$\left[\frac{2 \times 273}{300}\right]$ litres are prepared from $=73 / 22.42273 / 300=5.9 \mathrm{~g}$

Solution 7.

$2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
2 V 2 V 1 V
2 moles of $\mathrm{H}_{2} \mathrm{O}$ gives = 1 mole of O_{2}
$\mathrm{So}, 1$ mole of $\mathrm{H}_{2} \mathrm{O}$ will give $=0.5$ moles of O_{2}
so, mass of $\mathrm{O}_{2}=$ no. of moles \times molecular mass
$=0.5 \times 32=16{\mathrm{~g} \text { of } \mathrm{O}_{2}}$
and 1 mole of O_{2} occupies volume $=22.4$ litre
so, 0.5 moles will occupy $=22.4 \times 0.5=11.2$ litres at S.T.P.

Solution 8.

$2 \mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{NaOH}+\mathrm{O}_{2}$
2 V 4 V 1 V
(a) Mol. Mass of $\mathrm{Na}_{2} \mathrm{O}_{2}=2 \times 23+2 \times 16=78 \mathrm{~g}$

Mass of $2 \mathrm{Na}_{2} \mathrm{O}_{2}=156 \mathrm{~g}$
$156 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O}_{2}$ gives $=160 \mathrm{~g}$ of $\mathrm{NaOH}(4 \times 40 \mathrm{~g})$
So, $1.56 \mathrm{Na}_{2} \mathrm{O}_{2}$ will give $=160 \times 1.56 / 156=1.6 \mathrm{~g}$
(b) $156 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O}_{2}$ gives $=22.4$ litres of oxygen

So, 1.56 g will give $=22.4 \times 1.56 / 156=0.224$ litres
$=224 \mathrm{~cm}^{3}$
(c) $156 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O}_{2}$ gives $=32 \mathrm{~g} \mathrm{O}_{2}$

So, $1.56 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O}_{2}$ will give $=32 \times 1.56 / 156$
$=32 / 100=0.32 \mathrm{~g}$

Solution 9.

$2 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NH}_{3}$
2 V 1 V 1 V 2 V
Mol. Mass of $2 \mathrm{NH}_{4} \mathrm{Cl}=2[14+(1 \times 4)+35.5]=2[53.5]=107 \mathrm{~g}$
(a) $107 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}$ gives $=34 \mathrm{~g} \mathrm{NH}_{3}$

So, $21.4 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}$ will give $=21.4 \times 34 / 107=6.8 \mathrm{~g} \mathrm{NH}_{3}$
(b) The volume of $17 \mathrm{~g} \mathrm{NH}_{3}$ is 22.4 litre

So, volume of 6.8 g will be $=6.8 \times 22.4 / 17=8.96$ litre

Solution 10.

$\mathrm{Al}_{4} \mathrm{C}_{3}+12 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{CH}_{4}+4 \mathrm{Al}(\mathrm{OH})_{3}$
1 V 3 V 4 V
$144 g 3 \times 22.4$ I volume
Now, since 144 g of $\mathrm{Al}_{4} \mathrm{C}_{3}$ gives $=3 \times 22.4$ litre of CH_{4}
So, 14.4 g of $\mathrm{Al}_{4} \mathrm{C}_{3}$ willgive $=3 \times 22.4 \times 14.4 / 144=6.72$ litres CH_{4}

Solution 11.

$\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
1 V 4 V 1 V 1 V
(a) 1 mole of MnO_{2} weighs $=87 \mathrm{~g}$ (mol. Mass)

So, 0.02 mole will weigh $=87 \times 0.02=1.74 \mathrm{~g} \mathrm{MnO}_{2}$
(b) 1 mole MnO_{2} gives = 1 mole of MnCl_{2}

So, 0.02 mole MnO_{2} will give $=0.02$ mole of MnCl_{2}
(c) 1 mole MnCl_{2} weighs $=126 \mathrm{~g}$ (mol mass)

So, 0.02 mole MnCl_{2} will weigh $=126 \times 0.02 \mathrm{~g}=2.52 \mathrm{~g}$
(d) 0.02 mole MnO_{2} will form $=0.02$ mole of Cl_{2}
(e) 1 mole of Cl_{2} weighs $=35.5 \mathrm{~g}$

So, 0.02 mole will weigh $=71 \times 0.02=1.42 \mathrm{~g}$ of Cl_{2}
(f) 1 mole of chlorine gas has volume $=22.4$ litres

So, 0.02 mole will have volume $=22.4 \times 0.02=0.448$ litre
(g) 1 mole MnO_{2} requires $\mathrm{HCl}=4$ mole

So, 0.02 mole MnO_{2} will require $=4 \times 0.02=0.08$ mole
(h) For 1 mole MnO_{2}, acid required $=4$ mole of HCl

So, for 0.02 mole, acid required $=4 \times 0.02=0.08$ mole Mass of $\mathrm{HCl}=0.08 \times 36.5=2.92 \mathrm{~g}$

Solution 12.

```
\(\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}\)
28 g 6 g 34 g
28 g of nitrogen requires hydrogen \(=6 \mathrm{~g}\)
2000 g of nitrogen requires hydrogen \(=6 / 28 \times 2000=3000 / 7 \mathrm{~g}\)
So mass of hydrogen left unreacted \(=1000-3000 / 7=571.4 \mathrm{~g}\) of \(\mathrm{H}_{2}\)
(b) 28 g of nitrogen forms \(\mathrm{NH}_{3}=34 \mathrm{~g}\)
2000 g of \(\mathrm{N}_{2}\) forms \(\mathrm{NH}_{3}\)
\(=34 / 28 \times 2000\)
\(=2428.6 \mathrm{~g}\)
```


Miscellaneous Exercise

Solution 1.

From equation: $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
1 mole of Oxygen gives $=2$ moles of steam
so, 0.5 mole oxygen will give $=2 \times 0.5=1 \mathrm{~mole}$ of steam

Solution 2.

$3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}$
1 V 8 V 3 V 2 V
Mol. Mass of $8 \mathrm{HNO}_{3}=8 \times 63=504 \mathrm{~g}$
(a) For $504 \mathrm{~g} \mathrm{HNO}_{3}$, Cu required is $=192 \mathrm{~g}$

So, for $63 \mathrm{~g} \mathrm{HNO}_{3}$ Cu required $=192 \times 63 / 504=24 \mathrm{~g}$
(b) 504 g of HNO_{3} gives $=2 \times 22.4$ litre volume of NO

So, 63 g of HNO_{3} gives $=2 \times 22.4 \times 63 / 504=5.6$ litre of NO

Solution 3.

(a) 28 g of nitrogen $=1 \mathrm{~mole}$

So, 7 g of nitrogen $=1 / 28 \times 7=0.25$ moless
(b) Volume of 71 g of Cl 2 at STP $=22.4$ litres

Volume of 7.1 g chlorine $=22.4 \times 7.1 / 71=2.24$ litre
(c) $22400 \mathrm{~cm}^{3}$ volume have mass $=28 \mathrm{~g}$ of CO(molar mass)

So, $56 \mathrm{~cm}^{3}$ volume will have mass $=28 \times 56 / 22400=0.07 \mathrm{~g}$

Solution 4.

$\%$ of N in $\mathrm{NaNO}_{3}=\frac{14}{85} \times 100=16.47 \%$
$\%$ of N in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=\frac{14}{132} \times 100=21.21 \%$
$\%$ of N in $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}=\frac{14}{60} \times 100=46.66 \%$
So, highest percentage of N is in urea.

Solution 5.
$2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
2 V 2 V 1 V
(a) From equation, 2 V of water gives 2 V of H_{2} and 1 V of O_{2} where $2 \mathrm{~V}=2500 \mathrm{~cm}^{3}$
so, volume of O_{2} liberated $=2 \mathrm{~V} / \mathrm{V}=1250 \mathrm{~cm}^{3}$
(b)

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
& \frac{P_{1} V_{1}}{T_{1}}=\frac{7 P_{1} \times V_{2}}{2 \times T_{1}} \\
& V_{2}=\frac{2500 \times 2}{7} \\
& V_{2}=\frac{5000}{7} \mathrm{~cm}^{3}
\end{aligned}
$$

(c)
$\frac{V_{1}}{V_{2}}=\frac{T_{1}}{T_{2}}$
$\frac{5000}{7 \times 2500}=\frac{T_{1}}{T_{2}}$
$\mathrm{T}_{2}=3.5 \mathrm{~T}_{1}$
i.e. temperature should be increased by 3.5 times.

Solution 6.

Molecular mass of urea=12 $+16+2(14+2)=60 \mathrm{~g}$
60 g of urea contains nitrogen $=28 \mathrm{~g}$
So, in 50 g of urea, nitrogen present $=23.33 \mathrm{~g}$
50 kg of urea contains nitrogen $=23.33 \mathrm{~kg}$

Solution 7.

(a) $80 \% \mathrm{C}$ and $20 \% \mathrm{H}$

So, atomic ratio of C and H are: $\mathrm{C}=\frac{80}{12}=6.66 ; \mathrm{H}=\frac{20}{1}=20$
Simple ratio of C:H = 1:3
So, empirical formula is CH_{3}
(b) Empirical formula mass $=12+(3 \times 1)=15 \mathrm{~g}$

Vapour density $=15$
So, the molecular mass $=15$ (V.D) $\times 2=30 \mathrm{~g}$
Hence, $\mathrm{n}=2$ so the molecular formula is $\mathrm{C}_{2} \mathrm{H}_{6}$

Solution 8.

$22400 \mathrm{~cm}^{3} \mathrm{CO}_{2}$ has mass $=44 \mathrm{~g}$
so, $224 \mathrm{~cm}^{3} \mathrm{CO}_{2}$ will have mass $=0.44 \mathrm{~g}$
Now since CO_{2} is being formed and X is a hydrocarbon so it contains C and H .
In $0.44 \mathrm{~g} \mathrm{CO}_{2}$, mass of carbon $=0.44-0.32=0.12 \mathrm{~g}=0.01 \mathrm{~g}$ atom
So, mass of Hydrogen in $X=0.145-0.12=0.025 \mathrm{~g}$
$=0.025 \mathrm{~g}$ atom
Now the ratio of $\mathrm{C}: \mathrm{H}$ is $\mathrm{C}=1: \mathrm{H}=2.5$ or $\mathrm{C}=2: \mathrm{H}=5$
i.e. the formula of hydrocarbon is $\mathrm{C}_{2} \mathrm{H}_{5}$
(a) C and H
(b) Copper (II) oxide was used for reduction of the hydrocarbon.
(c)
(i) no. of moles of $\mathrm{CO}_{2}=0.44 / 44=0.01$ moles
(ii) mass of $\mathrm{C}=0.12 \mathrm{~g}$
(iii) mass of $\mathrm{H}=0.025 \mathrm{~g}$
(iv) The empirical formula of $\mathrm{X}=\mathrm{C}_{2} \mathrm{H}_{5}$

Solution 9.

Mass of X in the given compound $=24 \mathrm{~g}$
Mass of oxygen in the given compound $=64 \mathrm{~g}$
So total mass of the compound $=24+64=88 \mathrm{~g}$
$\%$ of X in the compound $=24 / 88100=27.3 \%$
\% of oxygen in the compound=64/88 $100=72.7 \%$
Element \% At. Mass Atomic ratio Simplest ratio
X 27.312 27.3/12=2.27 1
O 72.716 72.2/16=4.54 2
So simplest formula $=\mathrm{XO}_{2}$

Solution 10.

(a) V.D $=\frac{\text { mass of gas at } S T P}{\text { mass of equal volume of } \mathrm{H}_{2}}=\frac{85}{5}=17$
(b) Molecular mass $=17(\mathrm{~V} . \mathrm{D}) \times 2=34 \mathrm{~g}$

Solution 11.

(a) $\mathrm{CO}_{2}+\mathrm{C} \rightarrow 2 \mathrm{CO}$

1 V 1 V 2 V
12 g of C gives $=44.8$ litre volume of CO
$\mathrm{So}, 3 \mathrm{~g}$ of C will give $=11.2$ litre of CO
(b) $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$

2 V 1 V 2 V
(i) 2 VCO requires oxygen $=1 \mathrm{~V}$
so, $24 \mathrm{~cm}^{3} \mathrm{CO}$ will require $=24 / 2=12 \mathrm{~cm}^{3}$
(ii) $2 \times 22400 \mathrm{~cm}^{3} \mathrm{CO}$ gives $=2 \times 22400 \mathrm{~cm}^{3} \mathrm{CO}_{2}$
so, $24 \mathrm{~cm}^{3} \mathrm{CO}$ will give $=24 \mathrm{~cm}^{3} \mathrm{CO}_{2}$

Solution 12.

```
2Ca(NO)
2V2V4V1V
(a) 56 g of CaO is obtained with }\mp@subsup{\textrm{NO}}{2}{}=2\times22.4 litre of N\mp@subsup{\textrm{NO}}{2}{
So,5.6\textrm{g of CaO is obtained with }\mp@subsup{\textrm{NO}}{2}{}=2\times22.4\times5.6/56
= 4.48 litre
(b) 56 g of CaO is obtained by=164 g Ca(NO
So, 5.6 g CaO is obtained by = 5.6 \times56/164 g Ca(NO)
= 16.4\textrm{g of Ca}(\mp@subsup{\textrm{NO}}{3}{}\mp@subsup{)}{2}{}\mathrm{ is heated.}
```

Solution 13.
(a) Number of molecules in $100 \mathrm{~cm}^{3}$ of oxygen=$=Y$

According to Avogadros law, Equal volumes of all gases under similar conditions of temperature and pressure contain equal number of molecules. Therefore , number of molecules in $100 \mathrm{~cm}^{3}$ of nitrogen under the same conditions of temperature and pressure $=$ Y
So, number of molecules in $50 \mathrm{~cm}^{3}$ of nitrogen under the same conditions of temperature and pressure $=\mathrm{Y} / 10050=\mathrm{Y} / 2$
(b) (i) Empirical formula is the formula which tells about the simplest ratio of combining capacity of elements present in a compound.
(ii) The empirical formula is CH_{3}
(iii) The empirical formula mass for $\mathrm{CH}_{2} \mathrm{O}=30$
V.D = 30

Molecular formula mass = V.D $2=60$
Hence, $\mathrm{n}=$ mol. Formula mass/empirical formula mass $=2$
So, molecular formula $=\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2}=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$

Solution 14.

The relative atomic mass of $\mathrm{Cl}=(35 \times 3+1 \times 37) / 4=35.5 \mathrm{amu}$

Solution 15.

Mass of silicon in the given compound $=5.6 \mathrm{~g}$
Mass of the chlorine in the given compound=21.3g
Total mass of the compound $=5.6 \mathrm{~g}+21.3 \mathrm{~g}=26.9 \mathrm{~g}$
$\%$ of silicon in the compound $=56 / 26.9 \times 100=20.82 \%$
$\%$ of chlorine in the compound $=21.2 / 26.9 \times 100=79.18 \%$
Element \% At. Mass At. Ratio Simplest ratio
Si 20.8228 20.82/28=0.741
$\mathrm{Cl} 79.1835 .579 .18 / 35.5=2.233$
So the empirical formula of the given compound $=\mathrm{SiCl}_{3}$

Solution 16.

```
% composition Atomic ratio Simple ratio
P}=38.27% 38.27/31=1.23
H=2.47% 2.47/1 = 2.47 2
O=59.26% 59.26/16=3.703
So, empirical formula is }\mp@subsup{\textrm{PH}}{2}{}\mp@subsup{\textrm{O}}{3}{}\mathrm{ or }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{PO}}{3}{
```



```
The molecular formula is = }\mp@subsup{\textrm{H}}{4}{}\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{O}}{6}{}\mathrm{ , because }\textrm{n}=162/81=
```


Solution 17.

$$
\begin{aligned}
& V_{1}=10 \text { litres } V_{2}=? \\
& T_{1}=27+273=300 \mathrm{~K} T_{2}=273 \mathrm{~K} \\
& \mathrm{P}_{1}=700 \mathrm{~mm} \mathrm{P}_{2}=760 \mathrm{~mm} \\
& \text { Using the gas equation } \\
& \qquad \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
& \qquad V_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}}=\frac{700 \times 10 \times 273}{300 \times 760}
\end{aligned}
$$

Molecular weight $A=60$
So, weight of 22.4 litres of A at STP $=60 \mathrm{~g}$
Weight of $=\frac{700 \times 10 \times 273}{300 \times 760} \quad$ litres of A at STP

$$
=\frac{60}{22.4} \times \frac{700 \times 10 \times 273}{300 \times 760} \mathrm{~g} \text { or } 22.45 \mathrm{~g}
$$

Solution 18.

(a) Molecular mass of $\mathrm{CO}_{2}=12+2 \times 16=44 \mathrm{~g}$

So, vapour density (V.D) $=$ mol. Mass $/ 2=44 / 2=22$
$V . D=\frac{\text { mass of certain am ount of } \mathrm{CO}_{2}}{\text { mass of equal volume ofhydrogen }}=\frac{m}{1}$
$22=\frac{m}{1}$
So, mass of $\mathrm{CO}_{2}=22 \mathrm{~kg}$
(b) According to Avogadros law ,equal volumes of all gases under similar conditions of temperature and pressure contain equal number of molecules.
So, number of molecules of carbon dioxide in the cylinder = number of molecules of hydrogen in the cylinder=X

Solution 19.

(a) The volume occupied by 1 mole of chlorine $=22.4$ litre
(b) Since PV=constant so, if pressure is doubled; the volume will become half i.e. 11.2 litres.
(c) $\mathrm{V}_{1} / \mathrm{V}_{2}=\mathrm{T}_{1} / \mathrm{T}_{2}$
22.4/ $\mathrm{V}_{2}=273 / 546$
$V_{2}=44.8$ litres
(d) Mass of $1 \mathrm{~mole} \mathrm{Cl}_{2}$ gas $=35.5 \times 2=71 \mathrm{~g}$

Solution 20.

(a) Total molar mass of hydrated $\mathrm{CaSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}=136+18 x$

Since 21% is water of crystallization, so
$\frac{18 x}{136+18 x}=\frac{21}{100}$
So, $x=2$ i.e. water of crystallization is 2 .
(b) For 18 g water, vol. of hydrogen needed $=22.4$ litre So, for 1.8 g , vol. of H_{2} needed $=1.8 \times 22.4 / 18=2.24$ litre
Now 2 vols. of water = 1 vol . of oxygen
1 vol. of water $=1 / 2 \mathrm{vol}$. of $\mathrm{O}_{2}=22.4 / 2=11.2$ lit.
18 g of water $=11.2 \mathrm{lit}$. of O_{2}
1.8 g of water $=11.2 / 1818 / 10=1.12 \mathrm{lit}$.
(c) 32 g of dry oxygen at STP $=22400 \mathrm{cc}$

2 g will occupy $=224002 / 32=1400 \mathrm{cc}$
$\mathrm{P}_{1}=760 \mathrm{~mm} \mathrm{P}_{2}=740 \mathrm{~mm}$
$\mathrm{V}_{1}=1400 \mathrm{cc} \mathrm{V}_{2}=$?
$\mathrm{T}_{1}=273 \mathrm{~K}, \mathrm{~T}_{2}=27+73=300 \mathrm{~K}$

x
$V_{2}=P_{1} V_{1} T_{2}=760 \times 1400 \times 300=1580 \mathrm{cc}$
$\begin{array}{lll}\mathrm{T}_{1} \mathrm{P}_{2} & 273 \quad 740\end{array}$
$=1580 / 1000=1.58 \mathrm{l}$
(d) $\mathrm{P}_{1}=750 \mathrm{~mm} \mathrm{P}_{2}=760 \mathrm{~mm}$
$\mathrm{V}_{1}=44$ lit. $\mathrm{V}_{2}=$?
$\mathrm{T}_{1}=298 \mathrm{~K} \mathrm{~T}_{2}=273 \mathrm{~K}$
$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \quad X$
$V_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}}=\frac{750 \times 44 \times 273}{298 \times 760}=39.78$ lit.
22.4 lit. of CO2 at STP has mass $=44 \mathrm{~g}$
39.78 lit. of CO2 at STP has masss $=44 \times 39.78$
22.4
$=78.14 \mathrm{~g}$
(e) Since 143.5 g of AgCl is produced from $=58.5 \mathrm{~g}$ of NaCl so, 1.435 g of AgCl is formed by $=0.585 \mathrm{~g}$ of NaCl $\%$ of $\mathrm{NaCl}=0.585 \times 100=58.5 \%$

Solution 21.

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
& \frac{P_{1} \times 22.4}{273}=\frac{2 P_{2} V_{2}}{546} \\
& V_{2}=22.4 \text { litre }
\end{aligned}
$$

Solution 22.

(a) The molecular mass of $\left(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}=256.4 \mathrm{~g}\right.$
\% of Oxygen = $12 \times 16 / 256$
= 75\%
(b) The molecular mass of boron in $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}=382 \mathrm{~g}$ \% of $B=4 \times 11 / 382=11.5 \%$

Solution 23.

```
V 
V = \underline { 3 6 0 \times 3 8 0 \times 2 7 3 } = 1 3 6 . 5 \mathrm { cm } ^ { 3 }
    760 360
136.5\mp@subsup{\textrm{cm}}{}{3}\mathrm{ of the gas weigh = 0.546}
22400 \mp@subsup{\textrm{cm}}{}{3}}\mathrm{ of the gas weight = =0.546 }\times22400=89.6 a.m.
Relative molecular mass= 89,6a.m.u
```


Solution 24.

(a) 252 g of solid ammonium dichromate decomposes to give 152 g of solid chromium oxide, so the loss in mass in terms of solid formed $=100 \mathrm{~g}$
Now, if 63 g ammonium dichromate is decomposed, the loss in mass would be $=100 \mathrm{x}$ $63 / 252=25 \mathrm{~g}$
(b) If 252 g of ammonium dichromate produces $\mathrm{Cr}_{2} \mathrm{O}_{3}=152 \mathrm{~g}$ So, 63 g ammonium dichromate will produce $=63 \times 152 / 252$ $=38 \mathrm{~g}$

Solution 25.

$2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$
2 V 3 V 2 V
128 g of SO_{2} gives $=2 \times 22.4$ litres volume
So, 12.8 g of SO_{2} gives $=2 \times 22.4 \times 12.8 / 128$
$=4.48$ litre volume
Or one can say 4.48 litres of hydrogen sulphide.
2×22.4 litre $\mathrm{H}_{2} \mathrm{~S}$ requires oxygen $=3 \times 22.4$ litre
$\mathrm{So}, 4.48$ litres $\mathrm{H}_{2} \mathrm{~S}$ will require $=6.72$ litre of oxygen

Solution 26.

From equation, $2 \mathrm{NH}_{3}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$
When 60 g NO is formed, mass of steam produced $=54 \mathrm{~g}$
So, 1.5 g NO is formed, mass of steam produced $=54 \times 1.5 / 60$
$=1.35 \mathrm{~g}$

Solution 27.

In 1 hectare of soil, N_{2} removed $=20 \mathrm{~kg}$
So, in 10 hectare N_{2} removed $=200 \mathrm{~kg}$
The molecular mass of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}=164$
Now, $28 \mathrm{~g} \mathrm{~N} \mathrm{~N}_{2}$ present in fertilizer $=164 \mathrm{~g} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
So, 200000 g of N_{2} is present in $=164 \times 200000 / 28$
$=1171.42 \mathrm{~kg}$

Solution 28.

(a) 1 mole of phosphorus atom $=31 \mathrm{~g}$ of phosphorus 31 g of $P=1$ mole of P
6.2 g of $\mathrm{P}=\frac{6.2 \times 1}{31}=0.2$ mole of P
(b) 31 g P reacts with $\mathrm{HNO}_{3}=315 \mathrm{~g}$
so, 6.2 g P will react with $\mathrm{HNO}_{3}=315 \times 6.2 / 31=63 \mathrm{~g}$
(c)

Moles of steam formed from 31 g phosphorus $=18 \mathrm{~g} / 18 \mathrm{~g}=1 \mathrm{~mol}$
Moles of steam formed from 6.2 g phosphorus $=1 \mathrm{~mol} / 31 \mathrm{~g} 6.2=0.2 \mathrm{~mol}$
Volume of steam produced at STP $=0.2 \times 22.4 \mathrm{l} / \mathrm{MOL}=4.48$ litre
Since the pressure $(760 \mathrm{~mm})$ remains constant, but the temperature $(273+273)=546$ is double, the volume of the steam also gets doubled
So,Volume of steam produced at 760 mm Hg and $273^{\circ} \mathrm{C}=4.48 \times 2=8.96$ litre

Solution 29.

(a) 1 mole of gas occupies volume $=22.4$ litre
(b) $112 \mathrm{~cm}^{3}$ of gaseous fluoride has mass $=0.63 \mathrm{~g}$
so, $22400 \mathrm{~cm}^{3}$ will have mass $=0.63 \times 22400 / 112$
$=126 \mathrm{~g}$
The molecular mass $=$ At mass $P+$ At. mass of F
$126=31+$ At. Mass of F
So, At. Mass of $\mathrm{F}=95 \mathrm{~g}$
But, at. mass of $\mathrm{F}=19$ so $95 / 19=5$

Hence, there are 5 atoms of F so the molecular formula $=\mathrm{PF}_{5}$

Solution 30.

```
\(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+10 \mathrm{H}_{2} \mathrm{O}\)
286 g 106 g
So, for \(57.2 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}=106 \times 57.2 / 286=21.2 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}\)
```

Solution 31.
(a) The molecular mass of $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}=234$

The $\%$ of $P=2 \times 31 / 234=26.49 \%$
(b) Simple ratio of $\mathrm{M}=34.5 / 56=0.616=1$

Simple ratio of $\mathrm{Cl}=65.5 / 35.5=1.845=3$
Empirical formula $=\mathrm{MCl}_{3}$

Empirical formula mass $=162.5$, Molecular mass $=2 \times \mathrm{V} . \mathrm{D}=325$

So, $n=2$

So, molecular formula $=\mathrm{M}_{2} \mathrm{Cl}_{6}$

Solution 32.

$\mathrm{V}_{1} / \mathrm{V}_{2}=\mathrm{n}_{1} / \mathrm{n}_{2}$
So, no. of moles of $\mathrm{Cl}=\mathrm{x} / 2$ (since V is directly proportional to n)
No. of moles of $\mathrm{NH}_{3}=x$
No. of moles of $\mathrm{SO}_{2}=x / 4$

This is because of Avogadros law which states Equal volumes of all gases, under similar conditions of temperature and pressure, contain equal number of molecules.

So, 20 litre nitrogen contains x molecules
So, 10 litre of chlorine will contain $=x \times 10 / 20=x / 2$ mols.
And 20 litre of ammonia will also contain $=x$ molecules
And 5 litre of sulphur dioxide will contain $=x \times 5 / 20=x / 4$ mols.

Solution 33.

```
4N 2O+CH4}->\mp@subsup{\textrm{CO}}{2}{}+2\mp@subsup{\textrm{H}}{2}{}\textrm{O}+4\mp@subsup{\textrm{N}}{2}{
4V1V1V2V4V
\(2 \times 22400\) litre steam is produced by \(\mathrm{N}_{2} \mathrm{O}=4 \times 22400 \mathrm{~cm}^{3}\)
```

So, $150 \mathrm{~cm}^{3}$ steam will be produced by $=4 \times 22400 \times 150 / 2 \times 22400$
$=300 \mathrm{~cm}^{3} \mathrm{~N}_{2} \mathrm{O}$

Solution 34.

(a) Volume of $\mathrm{O}_{2}=\mathrm{V}$

Since O_{2} and N_{2} have same no. of molecules $=x$
so, the volume of $\mathrm{N}_{2}=\mathrm{V}$
(b) 3 x molecules means 3 V volume of CO
(c) 32 g oxygen is contained in $=44 \mathrm{~g}$ of CO_{2}

So, 8 g oxygen is contained $\mathrm{in}=44 \times 8 / 32=11 \mathrm{~g}$
(d) Avogadro's law is used in the above questions.

Solution 35.

(a) 444 g is the molecular formula of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtCl}_{6}$ $\%$ of $\mathrm{Pt}=(195 / 444) \times 100=43.91 \%$ or 44%
(b) simple ratio of $\mathrm{Na}=42.1 / 23=1.83=3$
simple ratio of $P=18.9 / 31=0.609=1$
simple ratio of $O=39 / 16=2.43=4$
So, the empirical formula is $\mathrm{Na}_{3} \mathrm{PO}_{4}$
Solution 36.
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
1V2V1V2V
From equation:
22.4 litres of methane requires oxygen $=44.8$ litres O_{2}
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
2 V 1 V 2 V
From equation,
44.8 litres hydrogen requires oxygen $=22.4$ litres O_{2}

So, 11.2 litres will require $=22.4 \times 11.2 / 44.8=5.6$ litres
Total volume $=44.8+5.6=50.4$ litres

Solution 37.

According to Avogadros law:
Equal volumes of all gases, under similar conditions of temperature and pressure ,contain equal number of molecules.

So, 1 mole of each gas contains $=6.02 \times 10^{23}$ molecules
Mol. Mass of $\mathrm{H}_{2}(2), \mathrm{O}_{2}(32), \mathrm{CO}_{2}(44), \mathrm{SO}_{2}(64), \mathrm{Cl}_{2}(71)$
(1) Now 2 g of hydrogen contains molecules $=6.02 \times 10^{23}$

So, 8 g of hydrogen contains molecules $=8 / 2 \times 6.02 \times 10^{23}$
$=4 \times 6.02 \times 10^{23}=4 \mathrm{M}$ molecules
(2) 32 g of oxygen contains molecules $=8 / 32 \times 6.02 \times 10^{23}=\mathrm{M} / 4$
(3) 44 g of carbon dioxide contains molecules $=8 / 446.0210^{23}=2 \mathrm{M} / 11$
(4) 64 g of sulphur dioxide contains molecules $=6.02 \times 10^{23}$

So, 8 g of sulphur dioxide molecules $=8 / 64 \times 6.02 \times 10^{23}=\mathrm{M} / 8$
(5) 71 g of chlorine contains molecules $=6.02 \times 10^{23}$

So, 8 g of chlorine molecules $=8 / 72 \times 6.02 \times 10^{23}=8 \mathrm{M} / 71$
Since $8 M / 71<M / 8<2 M / 11<M / 4<4 M$
Thus $\mathrm{Cl}_{2}<\mathrm{SO}_{2}<\mathrm{CO}_{2}<\mathrm{O}_{2}<\mathrm{H}_{2}$
(i)Least number of molecules in Cl_{2}
(ii)Most number of molecules in H_{2}

Solution 38.

$\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{BaCl}_{2} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{NaCl}$
Molecular mass of $\mathrm{BaSO}_{4}=233 \mathrm{~g}$
Now, 233 g of BaSO_{4} is produced by $\mathrm{Na}_{2} \mathrm{SO}_{4}=142 \mathrm{~g}$
So, $6.99 \mathrm{~g} \mathrm{BaSO}_{4}$ will be produced by $=6.99 \times 142 / 233=4.26$
The percentage of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in original mixture $=4.26 \times 100 / 10$ $=42.6 \%$

Solution 39.

(a) 1 litre of oxygen has mass $=1.32 \mathrm{~g}$

So, 24 litres (molar vol. at room temp.) will have mass $=1.32 \times 24$
$=31.6$ or 32 g
(b) $2 \mathrm{KMnO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}$

316 g of KMnO_{4} gives oxygen $=24$ litres
So, 15.8 g of KMnO_{4} will give $=24 \times 316 / 15.8=1.2$ litres

Solution 40.

(a)
(i) The no. of moles of $\mathrm{SO}_{2}=3.2 / 64=0.05$ moles
(ii) In 1 mole of SO_{2}, no. of molecules present $=6.02 \times 10^{23}$

So, in 0.05 moles, no. of molecules $=6.02 \times 10^{23} \times 0.05$
$=3.0 \times 10^{22}$
(iii) The volume occupied by 64 g of $\mathrm{SO}_{2}=22.4 \mathrm{dm}^{3}$
$3.2 \mathrm{~g} \mathrm{of}_{2}$ will be occupied by volume $=22.4 \times 3.2 / 64=1.12 \mathrm{dm}^{3}$
(b) Gram atoms of $\mathrm{Pb}=6.21 / 207=0.03=1$

Gram atoms of $\mathrm{Cl}=4.26 / 35.5=0.12=4$
So, the empirical formula $=\mathrm{PbCl}_{4}$

Solution 41.

(i) D contains the maximum number of molecules because volume is directly proportional to the number of molecules.
(ii) The volume will become double because volume is directly proportional to the no. of molecules at constant temperature and pressure.
$\mathrm{V}_{1} / \mathrm{V}_{2}=\mathrm{n}_{1} / \mathrm{n}_{2}$
$V_{1} / V_{2}=n_{1} / 2 n_{1}$
So, $\mathrm{V}_{2}=2 \mathrm{~V}_{1}$
(iii) Gay lussac's law of combining volume is being observed.
(iv) The volume of $D=5.64=22.4 \mathrm{dm}^{3}$, so the number of molecules $=6 \times 10^{23}$ because according to mole concept 22.4 litre volume at STP has $=6 \times 10{ }^{23}$ molecules
(v) No. of moles of $\mathrm{D}=1$ because volume is 22.4 litre so, mass of $\mathrm{N}_{2} \mathrm{O}=144=44 \mathrm{~g}$

Solution 42.
(a) $\mathrm{NaCl}+\mathrm{NH}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaHCO}_{3}+\mathrm{NH}_{4} \mathrm{Cl}$ $2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

From equation:
106 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is produced by $=168 \mathrm{~g}$ of NaHCO_{3}
$\mathrm{So}, 21.2 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ will be produced by $=168 \times 21.2 / 106$
$=33.6 \mathrm{~g}$ of NaHCO_{3}
(b) For 84 g of NaHCO_{3}, required volume of $\mathrm{CO}_{2}=22.4$ litre

So, for 33.6 g of NaHCO_{3}, required volume of $\mathrm{CO}_{2}=22.4 \times 33.6 / 84$
$=8.96$ litre

Solution 43.

(a) $\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$

1mole 1mole 2 mole
1 V 1 V 2 V
44.8 litres of water produced by $=22.4$ litres of $\mathrm{NH}_{4} \mathrm{NO}_{3}$

So, 8.96 litres will be produced by $=22.4 \times 8.96 / 44.8$
$=4.48$ litres of $\mathrm{NH}_{4} \mathrm{NO}_{3}$
So, 4.48 litres of $\mathrm{N}_{2} \mathrm{O}$ is produced.
(i) 44.8 litre $\mathrm{H}_{2} \mathrm{O}$ is produced by $=80 \mathrm{~g}$ of $\mathrm{NH}_{4} \mathrm{NO}_{3}$

So, 8.96 litre $\mathrm{H}_{2} \mathrm{O}$ will be produced by $=80 \times 8.96 / 44.8$
$=16 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}$
(iii) $\%$ of O in $\mathrm{NH}_{4} \mathrm{NO}_{3}=3 \times 16 / 80=60 \%$

Solution 44.

(a) Element \% Atomic mass Atomic ratio Simple ratio K 47.9391 .222
Be 5.590 .61
F 46.6192 .454
so, empirical formula is $\mathrm{K}_{2} \mathrm{BeF}_{4}$
(b) $3 \mathrm{CuO}+2 \mathrm{NH}_{3} \rightarrow 3 \mathrm{Cu}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$

3 V 2 V 3 V 1 V
$3 \times 80 \mathrm{~g}$ of CuO reacts with $=2 \times 22.4$ litre of NH_{3}
so, 120 g of CuO will react with $=2 \times 22.4 \times 120 / 80 \times 3$
$=22.4$ litres

Solution 45.
(a) The molecular mass of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ is 28 g

No. of moles $=1.4 / 28=0.05$ moles
No. of molecules $=6.023 \times 10^{23} \times 0.05=3 \times 10^{22}$ molecules
Volume $=22.4 \times 0.05=1.12$ litres
(b) Molecular mass $=2 \times$ V.D

SO, V.D $=28 / 2=14$

Solution 46.

(a) Molecular mass of $\mathrm{Na}_{3} \mathrm{AlF}_{6}=210$

So, Percentage of $\mathrm{Na}=3 \times 23 \times 100 / 210=32.85 \%$
(b) $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$

2 V 1 V 2 V
1 mole of O_{2} has volume $=22400 \mathrm{ml}$
Volume of oxygen used by $2 \times 22400 \mathrm{ml} \mathrm{CO}=22400 \mathrm{ml}$
So, Vol. of O_{2} used by $560 \mathrm{ml} \mathrm{CO}=22400 \times 560 /(2 \times 22400)$
$=280 \mathrm{ml}$
So, Volume of CO_{2} formed is 560 ml .

Solution 47.

a. Mass of gas $X=10 \mathrm{~g}$

Mass of hydrogen gas= 2
Relative vapour density
$=\frac{\text { Massof volume of gas } X \text { under similar conditions }}{\text { Mass of volume of hydogengasunder similar conditions }}=\frac{10}{2}=5$
Relative molecular mass of the gas= $2 \times$ relative vapour
density $=2 \times 5$
$=10$
b.
i. The combustion reaction $2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{乙(\mathrm{~g})} \rightarrow 4 \mathrm{CO}_{乙(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

According to Gay-Lussac's law,
2 volume of acetylene requires 5 volume of oxygen to burn it
$\therefore 1$ volume of acetylene requires 2.5 volume of oxygen to burn it
$\therefore 200 \mathrm{~cm}^{3}$ requires $2.5 \times 200=500 \mathrm{~cm}^{3}$ of oxygen
2 volume of acetylene on combustion gives $4 \mathrm{CO}_{2}$
$\therefore 1$ volume of acetylene on combustion gives $2 \mathrm{CO}_{2}$
$\therefore 200 \mathrm{cc}$ of acetylene on combustion will give $200 \times 2=400 \mathrm{cc}$ of CO_{2}
ii. Hydrogen = 12.5\%
\therefore Nitrogen $=100-12.5=87.5 \%$

Element	\% Weight	Atomic Weight	Atomic Ratio	Simplest Ratio
N	87.5	14	$87.5 / 14=6.25$	$6.25 / 6.25=1$
H	12.5	1	$12.5 / 1=12.5$	$12.5 / 6.25=2$

The Empirical formula of the compound is NH_{2}
Empirical formula weight $=14+2=16$
Relative molecular mass $=37$

$$
\mathrm{N}=\frac{\text { Relative molecular mass }}{\text { Empirical Weight }}=\frac{37}{16}=
$$

Molecular formula $=\mathrm{n} \times$ empirical formula $=2 \times \mathrm{NH}_{2}$ $=\mathrm{N}_{2} \mathrm{H}_{4}$
c.
i. Molecules of nitrogen gas in a cylinder $=24 \times 10^{24}$ Avogadro's number $=6 \times 10^{23}$

1. Mass of nitrogen in a cylinder $=\frac{24 \times 10^{24} \times 28}{6 \times 10^{23}}$ $=1120 \mathrm{~g}$
2. Volume of nitrogen at stp

Volume of 28 g of $\mathrm{N}_{2}=22.4 \mathrm{dm}^{3}$

$$
\begin{gathered}
\text { Volume of } 1120 \mathrm{~g} \text { of } \mathrm{N}_{2}=\frac{1120 \times 22.4}{28} \mathrm{dm}^{3} .896 \mathrm{dm}^{3}
\end{gathered}
$$

Solution 48.

a.
i. 10 litres of LPG contains

Propane $=\frac{60}{100} \times 10=6$ litres
Butane $=\frac{40}{100} \times 10=4$ litres
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
1 vol . 3 vol .

$$
6 \mathrm{~L} \quad 18 \mathrm{~L}
$$

$2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$ 2 vol. 8 vol.
4 L 16L
18+16=34 L
ii. Molecular mass of $\mathrm{NH}_{4}\left(\mathrm{NO}_{3}\right)=80$
$H=1, N=14, O=16$
\% of Nitrogen
As 80 g of $\mathrm{NH} 4(\mathrm{NO} 3)$ contains 28 g of nitrogen
$\therefore 100 \mathrm{~g}$ of of $\mathrm{NH}_{4}\left(\mathrm{NO}_{3}\right)$ will contain $\frac{28 \times 100}{80}$
= 35%
\% of Oxygen
$\mathrm{As}, 80 \mathrm{~g}$ of NH 4 (NO3) contains 48 g of oxygen
$\therefore 100 \mathrm{~g}$ of of $\mathrm{NH}_{4}\left(\mathrm{NO}_{3}\right)$ will contain $\frac{100 \times 48}{80}$

$$
=60 \%
$$

b.
i. Equation for reaction of calcium carbonate with dilute hydrochloric acid:

$$
\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow
$$

ii. Relative molecular mass of calcium carbonate $=100$

Mass of 4.5 moles of calcium carbonate
$=$ No. of moles \times Relative molecular mass
$=4.5 \times 100$
$=450 \mathrm{~g}$
iii. $\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow$

As, 100 g of calcium carbonate gives $22.4 \mathrm{dm}^{3}$ of CO_{2}
$\therefore 450 \mathrm{~g}$ of calcium carbonate will give $\frac{450 \times 22.4}{100}$
$=100.8 \mathrm{~L}$
iii. Molecular mass of calcium carbonate $=100$

Relative molecular mass of calcium chloride $=111$
As 100 g of calcium carbonate gives 111 g of calcium chloride
$\therefore 450 \mathrm{~g}$ of calcium carbonate will give $\frac{450 \times 111}{100}$
$=499.5 \mathrm{~g}$
iv.

Molecular mass of $\mathrm{HCl}=36.5$
Molecular mass of calcium carbonate $=100$
As 100 g of calcium carbonate gives $(2 \times 36.5)=73 \mathrm{~g}$ of HCl
$\therefore 450 \mathrm{~g}$ of calcium carbonate will give $\frac{450 \times 73}{100}$ $=328.5 \mathrm{~g}$

Weight of HCl
Number of moles of $\mathrm{HCl}=\overline{\text { Molealar weight of } \mathrm{HCl}}$

$$
\begin{aligned}
& \frac{328.5}{36.5} \\
= & 9 \text { moles }
\end{aligned}
$$

Solution 49.

a.
i. Atomic mass: $\mathrm{S}=32$ and $\mathrm{O}=16$

Molecular mass of $\mathrm{SO}_{2}=32+(2 \times 16)$
$=64 \mathrm{~g}$
As 64 g of $\mathrm{SO}_{2}=22.4 \mathrm{dm}^{3}$
Then, $320{\mathrm{~g} \text { of } \mathrm{SO}_{2}=\frac{320 \times 22.4}{64}}_{64}$
$=112$ L
ii. Gay-Lussac's law Gay-Lussac's Law states "When gases react, they do so in volumes which bear a simple ratio to one another and to the volume of the gaseous product, if all the volumes are measured at the same temperature and pressure."
iii. $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

Molar mass of propane $=44$
44 g of propane requires 5×22.4 litres of oxygen at STP.
8.8 g of propane requires $\frac{5 \times 22.4 \times 8.8}{44}=22.4$ litres
b.
i.

Element	Relative atomic mass	\%Compound	Atomic ratio	Simplest ratio
H	1	2.13	$2.13 / 1=2.13$	2
C	12	12.67	$12.67 / 12=1.055$	2
Br	80	85.11	$85.11 / 80=1$	1

Empirical formula $=\mathrm{CH}_{2} \mathrm{Br}$
n (Empirical formula mass of $\left.\mathrm{CH}_{2} \mathrm{Br}\right)=$ Molecular mass $(2 \times \mathrm{VD})$
$\mathrm{n}(12+2+80)=94 \times 2$
$\mathrm{n}=2$
Molecular formula $=$ Empirical formula $\times 2$
$=\left(\mathrm{CH}_{2} \mathrm{Br}\right) \times 2$
$=\mathrm{C}_{2} \mathrm{H}_{2} 2^{\mathrm{Br}} \mathrm{Br}_{2}$
ii. 10^{22} atoms of sulphur
6.022×10^{23} atoms of sulphur will have mass $=32 \mathrm{~g}$
10^{22} atoms of sulphur will have mass $=\frac{32 \times 10^{22}}{6.022 \times 10^{23}}$
$=0.533 \mathrm{~g}$
iii. 0.1 mole of carbon dioxide

1 mole of carbon dioxide will have mass $=44 \mathrm{~g}$
0.1 mole of carbon dioxide will have mass $=4.4 \mathrm{~g}$

Solution 50.

a. $\mathrm{P}+5 \mathrm{HNO}_{\mathrm{J}_{[\text {ame } \mathrm{e} \mid}} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}+5 \mathrm{NO}_{2}$
i. Number of moles of phosphorus taken $=\frac{9.3}{31}$ $=0.3 \mathrm{~mol}$
ii. 1 mole of phosphorus gives 98 gm of phosphoric acid.

So, 0.3 mole of phosphorus gives $(0.3 \times 98) \mathrm{gm}$ of phosphoric acid $=29.4 \mathrm{gm}$ of phosphoric acid
iii. 1 mole of phosphorus gives 112 L of NO^{2} gas at STP.

So, 0.3 mole of phosphorus gives $(112 \times 0.3) \mathrm{L}$ of
NO^{2} gas at STP.
$=33.6 \mathrm{~L}$ of NO^{2} gas at STP
b.
i. According to the equation
$\mathrm{N}_{2_{\mid \text {|9 }}}+3 \mathrm{H}_{\mathrm{z}_{\text {|81 }}} \rightarrow 2 \mathrm{NH}_{\mathrm{J}_{\text {|81 }}}$
3 volumes of hydrogen produce 2 volumes of ammonia
67.2 litres of hydrogen produce $\frac{2 \times 67.2}{3}=44.8 \mathrm{~L}$

3 volumes of hydrogen combine with 1 volume of ammonia.
67.2 litres of hydrogen combine with $\frac{1 \times 67.2}{3}=22.4 \mathrm{~L}$ Nitrogen left $=44.8-22.4=22.4$ litres ii. $5.6 \mathrm{dm}^{3}$ of gas weighs 12 g
$1 \mathrm{dm}^{3}$ of gas weighs $=(12 / 56) \mathrm{gm}$
$22.4 \mathrm{dm}^{3}$ of gas weighs $=(12 / 56 \times 22.2) \mathrm{gm}=48 \mathrm{~g}$
Therefore, the relative molecular mass of gas $=48 \mathrm{gm}$.
iii. Molar mass of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
$=24 \times(14 \times 2)+(16 \times 12)+(1 \times 12)=256 \mathrm{~g}$
Mass percent of magnesium $=\frac{24 \times 100}{256}=9.37 \%$

Solution 51.

a.

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}
$$

i. $2 V$

13 V
2 vols. of butane requires $\mathrm{O}_{2}=13$ vols
$90 \mathrm{dm}^{3}$ of phatane will require $\mathrm{O}_{2}=\frac{13}{2} \times 90$
$=585 \mathrm{dm}^{3}$
ii. Molecular mass $=2 \times$ Vapour density

So, molecular mass of gas $=2 \times 8=16 \mathrm{~g}$
As we know, molecular mass or molar mass occupies 22.4 litres.
That is,
16 g of gas occupies volume $=22.4$ litres
So, 24 g of gas will occupy volume
$=\frac{22.4}{16} \times 24=33.6$ litres
iii. According to Avogadro's law, equal volumes of all gases under similar conditions of temperature and pressure contain the same number of molecules.
So, molecules of nitrogen gas present in the same vessel $=\mathrm{X}$
b.

$$
2 \mathrm{KClO}_{3} \xrightarrow{\mathrm{MO}_{2}} 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

$$
\text { i. } 2 \mathrm{~V} \quad 2 \mathrm{~V} \quad 3 \mathrm{~V}
$$

3 vols. of oxygen require $\mathrm{KClO}_{3}=2$ vols.
So, 1 vol. of oxygen will require $\mathrm{KClO}_{3}=\frac{2}{3}$ vols. So, 6.72 litres of oxygen will require KClO_{3}
$\mathrm{So}, 1 \mathrm{vol}$. of oxygen will require $\mathrm{KClO}_{3}=\frac{2}{3}$ vols.
So, 6.72 litres of oxygen will require KClO_{3}
$=\frac{2}{3} \times 6.72=4.48$ litres
22.4 litres of KClO_{3} has mass $=122.5 \mathrm{~g}$

So, 4.48 litres of KClO_{3} will have mass
$=\frac{122.5}{22.4} \times 4.48=24.5 \mathrm{~g}$
ii. 22.4 litres of oxygen $=1$ mole

So, 6.72 litres of oxygen $=\frac{6.72}{22.4}=0.3$ moles
No. of moleçules present in 1 mole of O_{2} $=6.023 \times 10^{23}$
So, no. of molecules present in 0.3 mole of O_{2}
$=6.023 \times 10^{23} \times 0.3$
$=1.806 \times 10^{23}$
iii. Volume occupied by 1 mole of CO_{2} at STP $=22.4$ litres

So, volume occupied by 0.01 mole of CO_{2} at $\mathrm{STP}=22.4 \times 0.01=0.224$ litres

Solution 52.

a.
i. $2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

2 moles of $\mathrm{C}_{2} \mathrm{H}_{2}=4$ moles of CO_{2}
$x \mathrm{dm}^{3}$ of $\mathrm{C}_{2} \mathrm{H}_{2}=8.4 \mathrm{dm}^{3}$ of CO_{2}
$x=\frac{2 \times 8.4}{4}$
$=4.2 \mathrm{dm}^{3}$ of $\mathrm{C}_{2} \mathrm{H}_{2}$
ii. Empirical formula $=\mathrm{X}_{2} \mathrm{Y}$

Atomic weight $(X)=10$
Atomic weight $(\mathrm{Y})=5$
Empirical formula weight $=(2 \times 10)+5$
$=25$
$\mathrm{n}=\frac{\text { Molecular weight }}{\text { Empirical formula weight }}$

$$
=\frac{2 \times \mathrm{V} . \mathrm{D}}{\text { Empirical formul a weight }}
$$

$$
=\frac{2 \times 25}{25}
$$

$=2$
So, molecular formula $=\mathrm{X}_{2} \mathrm{Y} \times 2$
$=\mathrm{X}_{4} \mathrm{Y}_{2}$
b.
i. A cylinder contains 68 g of ammonia gas at STP.

Molecular weight of ammonia $=17 \mathrm{~g} / \mathrm{mole}$
68 g of ammonia gुas at STP $=$?
$1 \mathrm{~mole}=22.4 \mathrm{dm}^{3}$
$\therefore 4 \mathrm{~mole}=22.4 \times 4=89.6 \mathrm{dm}^{3}$
ii. 4 moles of ammoniag gas is present in the cylinder.
iii. 1 mole $=6.023 \times 10^{23}$ molecules

4 moles $=24.092 \times 10^{23}$ molecules

Solution 42.

The formula of aluminium nitride is AIN.
The molecular mass $=41$
So, the percentage of $\mathrm{N}=14 \times 100 / 41=34.146 \%$

Solution 48.

(i) Element \% atomic mass atomic ratio simple ratio

$$
C 4.812 \frac{4.8}{12}=0.4^{1}
$$

$\operatorname{Br} 95.280 \frac{95.2}{80}=1.2^{3}$
So, empirical formula is CBr_{3}
(ii) Empirical formula mass $=12+3 \times 80=252 \mathrm{~g}$
molecular formula mass $=2 \times 252$ (V.D) $=504 \mathrm{~g}$
$n=504 / 252=2$
so, molecular formula $=\mathrm{C}_{2} \mathrm{Br}_{6}$

Solution 49.

$2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}$
2 V 25 V 16 V 18 V
(i) 2 moles of octane gives $=16$ moles of CO_{2}
so, 1 mole octane will give $=8$ moles of CO_{2}
(ii) 1 mole CO_{2} occupies volume $=22.4$ litre
so, 8 moles will occupy volume $=8 \times 22.4=179.2$ litre
(iii) 1 mole CO_{2} has mass $=44 \mathrm{~g}$
so, 16 moles will have mass $=44 \times 16=704 \mathrm{~g}$
(iv) Empirical formula is $\mathrm{C}_{4} \mathrm{H}_{9}$.

Solution 50.
(a) (i) element \% atomic mass at. ratio simple ratio

C 14.4121 .21
H 1.211 .21
CI 84.535 .52 .382
Empirical formula $=\mathrm{CHCl}_{2}$
(ii) Empirical formula mass $=12+1+71=84 \mathrm{~g}$

Since molecular mass $=168$ so, $n=2$
so, molecular formula $=\left(\mathrm{CHCl}_{2}\right)_{2}=\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}$
(b) (i) $\mathrm{C}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$

1 V 2 V 1 V 2 V
196 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is required to oxidized $=12 \mathrm{~g} \mathrm{C}$
So, 49 g will be required to oxidise $=49 \times 12 / 196=3 \mathrm{~g}$
(ii) 196 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ occupies volume $=2 \times 22.4$ litres

So, $49 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ will occupy $=2 \times 22.4 \times 49 / 196=11.2$ litre
i.e. volume of $\mathrm{SO}_{2}=11.2$ litre

